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Polycyclic oligosilanes[1–3] are interesting silicon compounds
because they have s electrons of Si�Si bonds delocalized over
a three-dimensional silicon framework which are often found
in crystalline or amorphous silicon and related important
silicon clusters.[4–6] Although various types of polycyclic
oligosilanes have been synthesized and investigated so far,
there have been very few studies on catenated polycyclic
oligosilanes (oligomers of polycyclic oligosilanes), which
should show significant interactions between polycyclic
oligosilane cages.[7–9]

Persila[n]staffanes A are one of the fascinating unknown
catenated polycyclic oligosilanes because they have highly
symmetric rodlike structures with bicyclo[1.1.1]pentasilane
units catenated at the bridgehead positions and they are
predicted by Yamaguchi to have small band gaps because of
delocalization of s electrons along the silicon cages.[7] The
corresponding all-carbon [n]staffanes B have been studied
extensively by Michl and co-workers.[10, 11] Although stable
bicyclo[1.1.1]pentasilanes bearing aryl substituents 1[12] and
2[13] have been synthesized by the Masamune and Breher,[14]

no catenated bicyclo[1.1.1]pentasilanes (persila[n]staffanes,
n� 2) have been reported. Herein, we would like to report
the synthesis and structure of a series of persila[n]staffanes 3
(n = 1), 4 (n = 2), and 5 (n = 3) and their remarkable
conjugation between bicyclo[1.1.1]pentasilane units.

To synthesize persila[n]staffanes, we designed novel
bicyclo[1.1.1]pentasilane 3 (persila[1]staffane) as a unit for
persila[n]staffanes. Compound 3 has 1) alkyl substituents
(iBu) on the bridge silicon atoms that cause least electronic
perturbation to silicon frameworks and 2) silyl substituents on
the bridgehead silicons (Me3Si) that can be easily function-
alized,[15] and hence, 3 should be suitable for investigation of

the intrinsic electronic structure of bicyclo[1.1.1]pentasilane
frameworks and extension of bicyclopentasilane units at the
bridgehead positions. Compound 3 was synthesized according
to the reaction sequence shown in Scheme 1. Reaction of
iBu2SiCl2 with 1 equiv of (Me3Si)3SiK in toluene gave

(Me3Si3)3SiSi(iBu)2Cl (6) in 87% yield, which was treated
with 1 equiv of tBuOK to afford 1,1,3,3-tetrasilylcyclotetra-
silane 7 in 57% yield.[16] Then, treatment of 7 with 2 equiv of
tBuOK giving bicyclotetrasilane-1,3-diide 8 followed by
iBu2SiCl2 afforded 3 as air-stable colorless crystals in 70%
yield.[17,18] The structure of 3 was determined by NMR
spectroscopy, MS spectrometry, and X-ray analysis (Figure 1).

Synthesis of persila[2]staffane 4 and persila[3]staffane 5
are accomplished by stepwise catenation of the bicyclo-
[1.1.1]pentasilane units through functionalization of their
bridgehead silicons of 3 as shown in Schemes 2 and 3.
Treatment of bicyclopentasilane 3 with tBuOK in the
presence of [18]crown-6 (18-c-6) in toluene resulted in the
cleavage of bridgehead Si�Si bond to form potassium
bicyclo[1.1.1]pentasilanide 9(18-c-6) in 55% yield. Although
a few polycyclic silyl anions have been synthesized,[19]

compound 9 is the first silyl anion with bicyclo-
[1.1.1]pentasilane skeleton. When the solution of 9 was
treated with an excess amount of 1,2-dibromoethane, 1-
bromobicyclo[1.1.1]pentasilane 10 was obtained in 76 % yield
(from 3).[20] Then, coupling reaction of 9 and 10 provided
persila[2]staffane 4 as air-stable colorless crystals in 53%
yield. In a similar manner, persila[3]staffane 5 was obtained
from 4 in 2% yield in two steps.[21] Structures of persilastaf-
fanes 4 and 5 were determined by NMR spectroscopy, MS
spectrometry, and X-ray analysis.[22]

Molecular structures of persilastaffanes 3–5 determined
by X-ray single-crystal analysis are shown in Figure 1.

Scheme 1. Synthesis of persila[1]staffane 3.
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Bicyclo[1.1.1]pentasilane 3 (Figure 1a) has a three-fold axis
through the bridgehead silicon atoms in the solid state.
Similarly to Masamune’s bicyclopentasilanes 1 and all-carbon
bicyclo[1.1.1]pentanes,[10] 3 has a short nonbonded distance
between bridgehead silicon atoms (Si2···Si2*) of 2.9768(5) �,
which is much shorter than the sum of van der Waals radii of
two silicon atoms (4.20 �) and close to that of 1 a (2.98 �),[12]

and considerably acute intracage Si�Si�Si angles (Si3�Si2�
Si4(*) and Si4�Si2�Si4* angles) at the bridgehead silicon
atom Si2 (84.68 on average). The exocyclic Si1�Si2 distance of
3 (2.3429(6) �) is slightly shorter than the endocyclic Si�Si
distances of 3 (2.3622(6)–2.3626(6) � for Si2�Si3 and Si2�
Si4), which are lying in the range of those of 1a (2.32(2)–
2.38(1) �).

Persila[2] and [3]staffanes 4 and 5 adopt almost linear
structures. The silicon atoms of the terminal SiMe3 group and
the bridgehead silicon atoms of the bicyclopentasilane cages
in 4 lie on the crystallographic three-fold axis, whereas those
of 5 deviate slightly from perfect linearity probably because of
the crystal packing.[23] The neighboring bicyclo-
[1.1.1]pentasilane cages are almost perfectly staggered with
the averaged dihedral angle Si(bridge)�Si(bridgehead)�
Si(bridgehead)�Si(bridge) of 1808 for 4 and 178.88 for 5.
All the tetrasilane units adopt the all-transoid and all-anti
conformation suitable for conjugation between Si�Si bonds in
the silicon cages. The endocyclic Si�Si distances of
2.3602(13)–2.3788(13) � for 4 and 2.355(3)–2.394(3) for 5
are slightly longer than those of 3. Similarly to 3, the intercage
bridgehead Si�Si distances of 4 (2.360(3) � for Si4�Si4’) and
5 (2.348(3) and 2.363(3) for Si6�Si7 and Si11�Si12, respec-
tively) as well as the Si(bridgehead)�SiMe3 distances
(2.341(2) �) are shorter than the endocyclic Si�Si bond.
The shorter exocyclic Si�Si bonds observed in 3–5 are
explained in terms of Bent’s rule: an increased s character
of the bridgehead silicon orbital in the exocyclic Si�Si bond
resulting from the acute intracage Si�Si�Si angles would be
responsible for the shorter exocyclic Si�Si bond distance.
Interestingly, the long axis of persilastaffanes 3–5 are
arranged almost parallel in the single crystals (see Figure S15
in the Supporting Information).[18] Distances between SiMe3

silicon atoms at the bridgehead position are 7.6626(7),
12.979(3), and 18.311(6) � for 3, 4, and 5, respectively. The
molecular structures of 3–5 show that each addition of
bicyclopentasilane units increases the length of the persilas-
taffane rod by about 5.3 �, but catenation of the bicyclopen-
tasilane units causes no remarkable change in the structural
characteristics of each bicyclopentasilane unit.

The NMR spectra show that compounds 3–5 have highly
symmetric structures in solution. The 1H and 13C NMR
spectra of 3–5 show a singlet-signal assigned to Me3Si
groups on the bridgehead silicon atoms and one (for 3 and
4) or two (for 5) set(s) of signals due to iBu groups on the
bridge silicon atoms suggesting facile rotation around the
interbridgehead Si�Si bonds in solution.[22]

The most striking spectral feature was found in UV/Vis
absorption spectra. As shown in Figure 2, compounds 3–5 in
hexane show two absorption bands I and II. The intense
band I and weak band II of 3 appear at around 220 nm (e =

Scheme 2. Functionalization of 3 (R = iBu).

Scheme 3. Synthesis of persila[2]staffane 4 and persila[3]staffane 5
(R = iBu).

Figure 1. ORTEP drawings of a) persila[1]staffane 3, b) persila[2]staf-
fane 4, and c) persila[3]staffane 5. All hydrogen atoms are omitted for
clarity. Thermal ellipsoids are shown at the 30 % probability level.

Figure 2. UV/Vis absorption spectra of persila[n]staffanes 3 (n = 1,
dotted line), 4 (n = 2, broken line), and 5 (n = 3, solid line) in hexane
at room temperature.
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6.8 � 104 cm�1 mol�1 dm3) and 255 nm (shoulder, e = 5.4 �
103 cm�1 mol�1 dm3), respectively.[24] Both bands I and II are
remarkably red-shifted and increased with increasing the
number of bicyclopentasilane cages (lmax/nm of bands I and
II: 263 and 300 for 4, 285 and 320 for 5). Although the red-
shift is similar to those observed for s!s* transitions of 12[25]

and 13[26] having all-anti and all-transoid pentasilane and
octasilane moieties similar to 3 and 4, the spectral features of
3 and 4 are different from those of 12 and 13.

To elucidate the absorption bands of 3–5, we performed
DFT calculations for model compounds 3’–5’. The molecular
structures of 3–5 determined by X-ray analysis were well-
reproduced by the structures of 3’–5’ optimized at the B3LYP/
6-31G(d) level.[27] As shown in Figure 3, frontier Kohn–Sham

(KS) orbitals of 3’–5’ calculated at the B3LYP/def2-TZVP
level are doubly degenerated s(Si�Si) orbitals in a bicyclo-
[1.1.1]pentasilane cage with p symmetry relative to the three-
fold axis (scage) and a s(Si�Si) orbital delocalized mainly over
the bridgehead Si�Si bonds with s symmetry (saxis), and the
corresponding scage* and saxis* orbitals, respectively. With
increasing the number of bicyclopentasilane cages, the scage

and saxis orbitals become higher in energy, while the scage* and
saxis* orbitals become lower in energy. These orbital features
would be ascribed to the conjugation between scage orbitals
and between the linearly arranged saxis orbitals.[9,28]

The experimental absorption spectra of 3–5 are qualita-
tively reproduced by the calculated absorption band positions
and oscillator strengths of 3’–5’.[27] According to the compar-

ison of the experimental and calculated absorption spectra,
bands I and II are assignable to the saxis!saxis* transition and
the scage!scage* transition with a significant contribution of
scage!saxis* transition, respectively.[29] The red-shifts of both
bands I and II on going from 3 to 5 indicate the remarkable
delocalization of s electrons between the catenated bicyclo-
[1.1.1]pentasilane cages.[7]

In conclusion, we successfully synthesized a series of
persila[n]staffanes 3–5 (n = 1–3) through a stepwise catena-
tion and disclosed the considerable delocalization of s elec-
trons along the catenated silicon cages. Persila[n]staffanes
may be fascinating rodlike silicon molecules as linear
connectors for novel silicon-based finely defined materi-
als.[30, 31]
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